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This paper is aimed at pn,=senting a fluid flow and heat transfer analysis in flat rectangular ducts 
with rounded edges. The differential momentum and energy equations are numerically solved by 
a finite difference technique for a fluid in steady-state, laminar flow with constant wall tempera- 
tures. The two-dimensional (2-D) velocity and temperature profiles are so determined, and the 
friction factors and the Nusselt numbers are predicted for different aspect ratios (0 _< = _< 0.5) for 
Newtonian and slug flows. The results show that the differences in friction factor and Nusselt 
number between round-edged ducts and rectangular ducts increase when the aspect ratio in- 
creases.Very accurate results are predicted by simple polynomial expressions. 
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I n t r o d u c t i o n  

The fluid dynamics and ]heat transfer behavior of flows through 
rectangular ducts with rounded edges (or "stadium-shaped") is of 
special interest because of the wide application in compact heat 
exchangers. These heat exchangers require tubes with a low 
hydraulic diameter for a given cross section surface, in order to 
have a high ratio of heat transfer area to exchanger volume 
(Taborek, et al. 1983). Flat tubes meet this requirement, and for this 
reason, they are often used in heat exchanger design. Automotive 
and truck radiators are so widely used that they afford a typical 
application of such heat exchangers; the coolant air passes through 
the radiator, while the hot fluid in the tubes is liquid at 
comparatively low Reynolds number. 

Experience indicates that flat tubes give the optimum heat 
transfer performance, and the matrices are light, yet adequately 
strong and not expensive to fabricate (Fraas 1989). Flattened 
rectangular tubes are the most common, but manufacturing 
considerations impose tubes with rounded edges. 

In the rectangular duct, for laminar flow, the friction factor and 
the Nusselt number were obtained and described in detail in several 
papers (Shah and London 1978; Har~ett and Kostic 1989). 
Although information is scarce for the round edged tubes, which 
represent the flat tubes used in most radiators, only in Kakaq, Shah, 
and Aung (1987) are stadium-shaped ducts dealt with. 

The fRe product and the Nusselt numbers for fluids with 
constant properties in fully developed laminar flow are constant, 
independent of Reynolds ~md Prandtl numbers, but dependent upon 
the flow passage geome~y and thermal boundary conditions. The 
boundary conditions play a fundamental role for the prediction of 
the Nusselt numbers. In the literature, three classes of boundary 
conditions are examined: l~e T condition (referred to constant wall 
temperature throughout the channel length), the HI condition 
(referred to constant wall temperature in the peripheral direction 
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and constant heat transfer rate in the axial direction), and the 112 
condition (referred to constant heat transfer rate in the peripheral 
direction as well as in the fluid axial direction). 

The aim of this paper is the analysis of the hydrodynamics and 
heat transfer of  flat tubes with rounded edges, for fully developed 
laminar flow, with HI boundary conditions. The results obtained 
for this kind of duct are compared with those obtained by the same 
procedure applied to rectangular ducts having equal encumbrance; 
i.e., equal cross section length and width, as shown in Figure 1, 
where the two different sections are superposed. The shorter side 
2b of  the rectangle is substituted, in the round-edged tube, by a half 
circumference with radius b. 

Govern ing  equa t i ons  and numer i ca l  so lu t i on  

Friction factor and Nusselt number cannot be treated until velocity 
and temperature distributions are specified. To reach this goal, 
consider a steady laminar, hydrodynamically fully developed flow 
of a Newtonian fluid, in forced convection in a rectangular duct. To 
simplify the analysis, some assumptions are made. 

(1) The physical properties are constant. 
(2) The incompressible fluid is flowing in a horizontal tube. 
(3) The pressure gradient is constant in the flow direction. 
(4) There are no heat sources and no viscous dissipation within the 

fluid. 
(5) According to 111 condition, the temperature gradient is 

constant in the flow direction, and the wall temperature is 
constant over every cross section. 

With these assumptions, the momentum Navier-Stokes equation 
becomes as follows: 

~ = .  + O) az 

with the boundary nonslip condition u = 0 at the walls, while the 
energy equation reads as follows: 

. (~T ~T'~ 
pcu(x, y ) ~  = k ~ -  + ~ - )  (2) 

with the H1 condition T=  Tw~l on the walls. 
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Figure I Rectangular and round-edged ducts with equal section length 
and width 

The origin of the Cartesian coordinate system is at the center of 
the duct. Analytical and numerical solutions of Equation 1 applied 
to rectangular ducts have been provided (Spiga and Morini 1994; 
Gao and Harmer 1993). No solution is available in the literature 
for ducts with rounded edges. 

The finite difference method allows us to represent the 
momentum and energy partial differential Equations 1 and 2 in 
algebraic form. A rectangular duct does not require any particular 
treatment for finite difference method: a 100 x 100 point grid has 
been used regardless of the duct aspect ratio (Salvadori and Baron 
1961). A modem PC equipped with 80486 processor takes only a 
few minutes to achieve the final result resorting to a Fortran 
program based on an iterative solution method. On the other hand, 
round-edged ducts require a special treatment in order to account 
for the irregular boundary on the rounded walls (a coarse mesh is 
shown for simplicity in Figure 2). 

Taylor's series second-order expansions about the point i,j give 
the following results for the local velocity: 

Ax ~u A 2 xedge + + (3) Ui,j+l Ui, j edge ~ i,j ~2X i,j 

= uij  + Ax ~-- + /,J (4) ' ~x i,j  2 ~ u  ui,j- i A X-~x x 

where the segments Ax and Axeag e are shown in Figure 2. 
Assuming the usual approximation: 

~U i,j Ui'j+l -- Ui'j-I 
~ + ~dge (5) 

the second partial derivative of u(x, y) is obtained by addition of 
the expressions 3 and 4: it reduces to an ordinary finite difference 

u(i,]-l) -( 

,,k ~' 
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Figure 2 Grid points arrangement on the duct boundary 

correlation if AXedse =/~ .  Analogously, the second derivative with 
respect toy is easily obtained; the same procedure can be applied to 
represent the second derivatives of Twith respect to x and y. The 
number of grid points chosen for the analysis of the round-edged 
duct ranges from 80 x 160 for ~ =  1/2 to 80 x 80 for ~--* 0. The 
numerical solution to the algebraic system is obtained by an 
iterative procedure, resorting to the relaxation method, a modified 
procedure of the Gauss-Seidel technique giving the numerical 
convergence in shorter times. 

Results 

The solution to the governing equations allows us to deduce the 
two-dimensional (2-D) velocity and temperature distribution in the 
rectangular cross section. Figure 3 shows the velocity distribution 
for rectangular and round-edged ducts, with equal cross section 
length and width; and g = 0.2. Different gray shades stand for 
different velocity intervals, ranging from the maximum value at the 
center of the section to 0 at the walls; every color variation 
indicates 10% variation of u. Rectangular duets have a wide area 
with very low velocity in the wall comers. This fact doesn't apply 
to round-edged duets. Of course, the numerical results concerning 
rectangular and round-edged ducts coincide when g tends to 0. 

The average velocity is determined through a surface integral 
over the cross section of the duct. Figure 4 shows the maximum to 
average velocity ratio in the two ducts; the difference increases 
with a (3.3% for • = 0.5). The aspect ratio is chosen less than 0.5 

Notat ion 

a , b  

C 
D 
f 
h 
k 
n 
Nu 
P 
Re 
r(.) 
Tbun, 
Twall u(.) 

longer and shorter half sides, respectively, of the 
rectangle, m 
specific heat, J/kg K 
equivalent diameter 4ab/a + b, m 
friction factor 
heat transfer coefficient, W/m2K 
thermal conductivity, W/ink 
coordinate normal to the wall, m 
Nusselt number, hi)& 
pressure, Pa 
Reynolds number, pWD/# 
fluid temperature, K 
fluid bulk temperature, K 
wall temperature, K 
fluid velocity, m/s 

W 
x, y 
z 

average velocity, m/s 
rectangular coordinates, m 
axial coordinate in the flow direction, m 

Subscripts 

rect rectangular 
rounded round-edged 

Greek 

Ax 
AXedge 

# 

P 

aspect ratio, b/a < 1 
step length in the x direction, m 
step length in the x direction near the rounded edge, 
m 
fluid viscosity, Pa s 
fluid density, kg/m 3 
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Figure 3 Velocity distribution in 1/4 cross section in the rectangular 
duct and the rounded edges 'tube 

in order to represent fiat rectangular tubes. 
The knowledge of the velocity distribution allows us to deduce 

the friction factor as a function of the Reynolds number; as usual it 
is defined as follows: 

f 2D 
p w  2 (6) 

Figure 5 reports the fRe  product of both types of tubes having 
equal encumbrance. Results are reported for different values of the 
rectangular duct aspect ratio for flattened tubes (0 < • < 0.5). 

The temperature distributions for the ducts are shown in Figure 
6, for ~ = 0.2. Knowledge of the temperature distribution allows us 
to calculate the temperature derivatives and the fluid bulk 
temperature. As usual the local heat transfer coefficient is defined 
as follows: 

hlocat (7) 
I T~l  - Tb~kl 

The rectangular duct corners present very low local heat transfer 
coefficients because of the fiat temperature profile. In fact, in the 
corner region the color is constant, so the temperature of the fluid 
does not change siguifica~tly. This does not happen for round- 
edged ducts, which present more regularly distributed local heat 
transfer coefficients. The heat transfer coefficient h, referred to the 
whole cross section, is the average local heat transfer coefficient, 
calculated as the line integral on the wetted perimeter of hloe~ 
divided by the perimeter length. 

Finally, the same problem has been solved for slug flow, which 
represents the limiting case of a non-Newtonian fluid with a 
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Figure 5 Friction factor-Reynolds number product for rectangular and 
round-edged ducts 

Figure 6 Temperature distribution in 1/4 cross section of the rectangular 
duct and the rounded edges tube 

rheological power law whose index goes to zero. The problem is 
easier, because the solution to Equation 1 is now u(x, y) = constant 
and the left-hand side of Equation 2 is constant. In slug flow, the 
velocity profile is quite flat, and the temperature profile is more 
uniform, hence the local Nusselt numbers are higher, with respect 
to the Newtonian flow. In Figure 7 the Nusselt numbers (Nu = hDI 
k) are reported for slug and Newtonian flows for the two kinds of 
tubes versus the aspect ratio. 

All the numerical results concerning the rectangular duct are in 
perfect agreement with the results available in the literature, and the 
numerical solution for ~--+ 0 provides the well-known slab 
geometry results. 
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Figure 4 Maximum-to-average velocity ratio in rectangular and 
rounded-edge ducts 
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Figure 7 Nusselt number in slug flow and laminar Newtonian flow, for 
rectangular and round-edged ducts 
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In conclusion, this analysis puts in evidence higher values for 
f R e  and Nu in the round-edged duct, compared to the rectangular 
duet. The results plotted in Figures 5 and 7 for laminar Newtonian 
flow are represented versus the aspect ratio by the polynomial 
expressions: 

(fRe)rou.ded = 1 -t- 0.180339= + 2.46175~t 2 - 19.3645~ 3 
(fRe)~ 

+60"0465ct4 - 85"5526=5 + 45'9244=6 (8) 

Nuro,n._..______~ = 1 + 0.249365= + 1.51039= 2 - 11.914= 3 
Nurect 

+43.3224ct 4 - 74.759= 5 + 48.9664= 6 

Agreement between the polynomials (Equation 8) and the 
numerical solution is within 0.56%. In a similar analysis quoted in 
Kaka~, Shah, and Aung (1987), thefRe prediction agrees with the 
numerical results within 3%. 

Finally, the Nusselt number in slug flow for round-edged ducts 
in H1 conditions is given, with an agreement within 0.40%, by the 
approximate polynomial: 

(Nu,=md=l~ = 1 + 0.313899= -- 2.4771= 2 + 32.8239~t 3 
\ Nur~ ,/slug 

- 1 9 8 . 5 7 4 ~  4 -t- 6 0 0 . 6 6 6 a  5 - 894.86a 6 

+ 522.775a 7 (9) 

Conclusions 

The numerical solution to the problem with HI boundary 
conditions in stadium-shaped ducts has been obtained in order to 

predict friction factors and Nusselt numbers. The main features of 
the paper consist in the presentation of 2-D velocity and 
temperature profiles, thefRe and Nu predictions, original for slug 
flow and improved, with respect to the existing literature, for 
Newtonian flow. 
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